油价调整规则算法举例_油价调整原理
这个算法为:油价联动系数等于相关因素变动量除以油价变动量。
油价联动系数是指在某种情况下,油价变动对其他相关因素的影响程度。一般来说,油价联动系数的计算方法为:油价联动系数=相关因素变动量/油价变动量。
相关因素可以是燃油消费量、交通运输成本、物流成本等,油价联动系数的计算需要根据具体情况进行调整和修正,因为不同的因素之间可能存在复杂的相互作用关系。
队列是一种先进先出的数据结构,由于这一规则的限制,使得队列有区别于栈等别的数据结构。
作为一种常用的数据结构,同栈一样,是有着丰富的现实背景的。以下是几个典型的例子。
[例5-2] 一个旅行家想驾驶汽车以最少的费用从一个城市到另一个城市(设出发时油箱是空的).给定两个城市之间的距离D1,汽车油箱的容量C(以升为单位),每升汽油能行驶的距离D2,出发点每升汽油价格P和沿途油站数N(N可以为零),油站i离出发点的距离Di,每升汽油价格Pi(i=1,2,……N).
计算结果四舍五入至小数点后两位.
如果无法到达目的地,则输出"No Solution".
样例:
INPUT
D1=275.6 C=11.9 D2=27.4 P=2.8 N=2
油站号I
离出发点的距离Di
每升汽油价格Pi
1
102.0
2.9
2
220.0
2.2
OUTPUT
26.95(该数据表示最小费用)
[问题分析]
看到这道题,许多人都马上判断出穷举是不可行的,因为数据都是以实数的形式给出的.但是,不用穷举,有什么方法是更好的呢 递推是另一条常见的思路,但是具体方法不甚明朗.
既然没有现成的思路可循,那么先分析一下问题不失为一个好办法.由于汽车是由始向终单向开的,我们最大的麻烦就是无法预知汽车以后对汽油的需求及油价变动;换句话说,前面所买的多余的油只有开到后面才会被发觉.
提出问题是解决的开始.为了着手解决遇到的困难,取得最优方案,那就必须做到两点,即只为用过的汽油付钱;并且只买最便宜的油.如果在以后的行程中发现先前的某些油是不必要的,或是买贵了,我们就会说:"还不如当初不买."由这一个想法,我们可以得到某种启示:设我们在每个站都买了足够多的油,然后在行程中逐步发现哪些油是不必要的,以此修改我们先前的购买,节省资金;进一步说,如果把在各个站加上的油标记为不同的类别,我们只要在用时用那些最便宜的油并为它们付钱,其余的油要么是太贵,要么是多余的,在最终的中会被排除.要注意的是,这里的便宜是对于某一段路程而言的,而不是全程.
[算法设计]由此,我们得到如下算法:从起点起(包括起点),每到一个站都把油箱加满(终点除外);每经过两站之间的距离,都按照从便宜到贵的顺序使用油箱中的油,并计算花费,因为这是在最优方案下不得不用的油;如果当前站的油价低于油箱中仍保存的油价,则说明以前的购买是不够明智的,其效果一定不如购买当前加油站的油,所以,明智的选择是用本站的油代替以前购买的高价油,留待以后使用,由于我们不是真的开车,也没有为备用的油付过钱,因而这样的反悔是可行的;当我们开到终点时,意味着路上的费用已经得到,此时剩余的油就没有用了,可以忽略.
数据结构用一个队列:存放由便宜到贵的各种油,一个头指针指向当前应当使用的油(最便宜的油),尾指针指向当前可能被替换的油(最贵的油).在一路用一路补充的过程中同步修改数据,求得最优方案.
注意:每到一站都要将油加满,以确保在有解的情况下能走完全程.并设出发前油箱里装满了比出发点贵的油,将出发点也看成一站,则程序循环执行换油,用油的操作,直到到达终点站为止.
本题的一个难点在于认识到油箱中油的可更换性,在这里,突破现实生活中的思维模式显得十分重要.
[程序清单]
program ex5_2(input,output);
const max=1000;
type recordtype=record price,content:real end;
var i,j,n,point,tail:longint;
content,change,distance2,money,use:real;
price,distance,consume:array[0..max] of real;
oil:array [0..max] of recordtype;
begin
write('Input DI,C,D2,P:'); readln(distance[0],content,distance2,price[0]);
write('Input N:'); readln(n); distance[n+1]:=distance[0];
for i:=1 to n do
begin
write('Input D[',i,'],','P[',i,']:');
readln(distance[i],price[i])
end;
distance[0]:=0;
for i:=n downto 0 do consume[i]:=(distance[i+1]-distance[i])/distance2;
for i:=0 to n do
if consume[i]>content then
begin writeln('No Solution'); halt end;
money:=0; tail:=1; change:=0;
oil[tail].price:=price[0]*2; oil[tail].content:=content;
for i:=0 to n do
begin
point:=tail;
while (point>=1) and (oil[point].price>=price[i]) do
begin
change:=change+oil[point].content;
point:=point-1
end;
tail:=point+1;
oil[tail].price:=price[i];
oil[tail].content:=change;
use:=consume[i]; point:=1;
while (use>1e-6) and (point=oil[point].content
then begin use:=use-oil[point].content;
money:=money+oil[point].content*oil[point].price;
point:=point+1 end
else begin oil[point].content:=oil[point].content-use;
money:=money+use*oil[point].price;
use:=0 end;
for j:=point to tail do oil[j-point+1]:=oil[j];
tail:=tail-point+1;
change:=consume[i]
end;
writeln(money:0:2)
end.
[例5-3] 分油问题:设有大小不等的3个无刻度的油桶,分别能够存满,X,Y,Z公升油(例如X=80,Y=50,Z=30).初始时,第一个油桶盛满油,第二,三个油桶为空.编程寻找一种最少步骤的分油方式,在某一个油桶上分出targ升油(例如targ=40).若找到解,则将分油方法打印出来;否则打印信息"UNABLE"等字样,表示问题无解.
[问题分析] 这是一个利用队列方法解决分油问题的程序.分油过程中,由于油桶上没有刻度,只能将油桶倒满或者倒空.三个油桶盛满油的总量始终等于开始时的第一个油桶盛满的油量.
[算法设计] 分油程序的算法主要是,每次判断当前油桶是不是可以倒出油,以及其他某个油桶是不是可以倒进油.如果满足以上条件,那么当前油桶的油或全部倒出,或将另一油桶倒满,针对两种不同的情况作不同的处理.
程序中使用一个队列Q,记录每次分油时各个油桶的盛油量和倾倒轨迹有关信息,队列中只记录互不相同的盛油状态(各个油桶的盛油量),如果程序列举出倒油过程的所有不同的盛油状态,经考察全部状态后,未能分出TARG升油的情况,就确定这个倒油问题无解.队列Q通过指针front和rear实现倒油过程的控制.
[程序清单]
program ex5_3(input,output);
const maxn=5000;
type stationtype=array[1..3] of integer;
elementtype=record
station:stationtype;
out,into:1..3;
father:integer
end;
queuetype=array [1..maxn] of elementtype;
var current,born:elementtype;
q:queuetype;
full,w,w1:stationtype;
i,j,k,remain,targ,front,rear:integer;
found:boolean;
procedure addQ(var Q:queuetype;var rear:integer; n:integer; x:elementtype);
begin
if rear=n
then begin writeln('Queue full!'); halt end
else begin rear:=rear+1; Q[rear]:=x end
end;
procedure deleteQ(var Q:queuetype;var front:integer;rear,n:integer;var x:elementtype);
begin
if front=rear
then begin writeln('Queue empty!'); halt end
else begin front:=front+1; x:=Q[front] end
end;
function dup(w:stationtype;rear:integer):boolean;
var i:integer;
begin
i:=1;
while (i<=rear) and ((w[1]q[i].station[1]) or
(w[2]q[i].station[2]) or (w[3]q[i].station[3])) do i:=i+1;
if i0 then
begin
print(q[k].father);
if k>1 then write(q[k].out, ' TO ',q[k].into,' ')
else write(' ':8);
for i:=1 to 3 do write(q[k].station[i]:5);
writeln
end
end;
begin {Main program}
writeln('1: ','2: ','3: ','targ');
readln(full[1],full[2],full[3],targ);
found:=false;
front:=0; rear:=1;
q[1].station[1]:=full[1];
q[1].station[2]:=0;
q[1].station[3]:=0;
q[1].father:=0;
while (front begin
deleteQ(q,front,rear,maxn,current);
w:=current.station;
for i:=1 to 3 do
for j:=1 to 3 do
if (ij) and (w[i]>0) and (w[j]remain
then begin w1[j]:=full[j]; w1[i]:=w[i]-remain end
else begin w1[i]:=0; w1[j]:=w[j]+w[i] end;
if not(dup(w1,rear)) then
begin
born.station:=w1;
born.out:=i;
born.into:=j;
born.father:=front;
addQ(q,rear,maxn,born);
for k:=1 to 3 do
if w1[k]=targ then found:=true
end
end
end;
if not(found)
then writeln('Unable!')
else print(rear)
end.
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。